Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake
نویسندگان
چکیده
Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate ([Formula: see text]) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers' community structure. All these results indicate that denitrification could be a major biochemical process responsible for the N losses that occur in La Caldera lake.
منابع مشابه
Vegetation characteristics of four ecological zones of Iran
Environmental (topography, climate) features have an important influence on plant diversity and richness of Iran. Topography is from –28m which is close to Caspian Sea to 5678m which is located on the Alborz Mountain. Two mountains (Alborz and Zagrosss) prevent moist air moving to the centre of Iran. On the basis of environmental factors, four ecological zones with specific plant richness from ...
متن کاملDiversity and Activity of Denitrifiers of Chilean Arid Soil Ecosystems
The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil c...
متن کاملTemporal variation of denitrification activity in plant-covered, littoral sediment from lake hampen, denmark.
Diel and seasonal variations in denitrification were determined in a littoral lake sediment colonized by the perennial macrophyte Littorella uniflora (L.) Aschers. In the winter, the activity was low (5 mumol of N m h) and was restricted to the uppermost debris layer at a depth of 0 to 1 cm. By midsummer, the activity increased to 50 mumol of N m h and was found throughout the root zone to a de...
متن کاملDenitrification by sulfur-oxidizing bacteria in a eutrophic lake
Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable is...
متن کاملMolecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions
Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and ...
متن کامل